Microfluidic micropipette aspiration for measuring the deformability of single cells.
نویسندگان
چکیده
We present a microfluidic technique for measuring the deformability of single cells using the pressure required to deform such cells through micrometre-scale tapered constrictions. Our technique is equivalent to whole-cell micropipette aspiration, but involves considerably simpler operation, less specialized equipment, and less technical skill. Single cells are infused into a microfluidic channel, and then deformed through a series of funnel-shaped constrictions. The constriction openings are sized to create a temporary seal with each cell as it passes through the constriction, replicating the interaction with the orifice of a micropipette. Precisely controlled deformation pressures are generated using an external source and then attenuated 100 : 1 using an on-chip microfluidic circuit. Our apparatus is capable of generating precisely controlled pressures as small as 0.3 Pa in a closed microchannel network, which is impervious to evaporative losses that normally limit the precision of such equipment. Intrinsic cell deformability, expressed as cortical tension, is determined from the threshold deformation pressure using the liquid-drop model. We measured the deformability of several types of nucleated cells and determined the optimal range of constriction openings. The cortical tension of passive human neutrophils was measured to be 37.0 ± 4.8 pN μm(-1), which is consistent with previous micropipette aspiration studies. The cortical tensions of human lymphocytes, RT4 human bladder cancer cells, and L1210 mouse lymphoma cells were measured to be 74.7 ± 9.8, 185.4 ± 25.3, and 235.4 ± 31.0 pN μm(-1) respectively. The precision and usability of our technique demonstrates its potential as a biomechanical assay for wide-spread use in biological and clinical laboratories.
منابع مشابه
Dynamic deformability of Plasmodium falciparum-infected erythrocytes exposed to artesunate in vitro.
Artesunate (ART) is widely used for the treatment of malaria, but the mechanisms of its effects on parasitized red blood cells (RBCs) are not fully understood. We investigated ART's influence on the dynamic deformability of ring-stage Plasmodium falciparum infected red blood cells (iRBCs) in order to elucidate its role in cellular mechanobiology. The dynamic deformability of RBCs was measured b...
متن کاملThe Application of Micropipette Aspiration in Molecular Mechanics of Single Cells.
Micropipette aspiration is arguably the most classical technique in mechanical measurements and manipulations of single cells. Despite its simplicity, micropipette aspiration has been applied to a variety of experimental systems that span different length scales to study cell mechanics, nanoscale molecular mechanisms in single cells, bleb growth, and nucleus dynamics, to name a few. Enabled by ...
متن کاملMicropipette aspiration of human platelets: influence of microtubules and actin filaments on deformability.
The deformability of human platelets has been evaluated by micropipette aspiration. Control discoid platelets were about ten times as resistant to deformation in the micropipette as red blood cells. Under a constant negative pressure of 10 cm H2O, control platelets developed extension lengths of 0.74 +/- 0.1 micron. Prior treatment with vincristine, colchicine, or low temperature, all of which ...
متن کاملA microfluidic pipette array for mechanophenotyping of cancer cells and mechanical gating of mechanosensitive channels.
Micropipette aspiration measures the mechanical properties of single cells. A traditional micropipette aspiration system requires a bulky infrastructure and has a low throughput and limited potential for automation. We have developed a simple microfluidic device which is able to trap and apply pressure to single cells in designated aspiration arrays. By changing the volume flow rate using a syr...
متن کاملMicropipette aspiration for studying cellular mechanosensory responses and mechanics.
Micropipette aspiration (MPA) is a widely applied method for studying cortical tension and deformability. Based on simple hydrostatic principles, this assay allows the application of a specific magnitude of mechanical stress on cells. This powerful method has revealed insights about cell mechanics and mechanosensing, not only in Dictyostelium discoideum but also in other cell types. In this cha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Lab on a chip
دوره 12 15 شماره
صفحات -
تاریخ انتشار 2012